
Mya Specification

Luiz Felipe Silva (Silva97)

January 13, 2025

Abstract
Mya (acronym for “Make Your Assembler”) is a formal language to

write specifications of an ISA (Instruction Set Architecture).

Contents
1 Syntax notation 2

1.1 Code example . 3

2 Declarations 5
2.1 Bitfield . 5

2.1.1 Examples . 5
2.2 Register . 6

2.2.1 Examples . 6
2.3 Instructions . 7

2.3.1 Examples . 7

3 Commands 9
3.1 include . 9

3.1.1 Examples . 9
3.2 set . 9

3.2.1 Examples . 9

1

https://github.com/Silva97

Mya Specification 1 SYNTAX NOTATION

1 Syntax notation
Wirth syntax notation (WSN) of Mya language:

PROGRAM = { DECLARATION | COMMAND } .

DECLARATION = BITFIELD_DECLARATION
| REGISTER_DECLARATION
| INSTRUCTION_DECLARATION .

BITFIELD_DECLARATION = "bitfield" BITFIELD_NAME SIZE_SPEC ["{"
BITFIELD_BODY "}"] .
BITFIELD_NAME = UPPERCASE_LETTER { ALPHACHARACTER } .
BITFIELD_BODY = BITFIELD_FIELD_DECLARATION {
BITFIELD_FIELD_DECLARATION } .
BITFIELD_FIELD_DECLARATION = IDENTIFIER SIZE_SPEC .
BITFIELD_SPEC = BITFIELD_NAME "{" (EXPRESSION |
BITFIELD_SPEC_FIELD { "," BITFIELD_SPEC_FIELD }) "}" .
BITFIELD_SPEC_FIELD = IDENTIFIER "=" EXPRESSION [","] .

REGISTER_DECLARATION = "register" IDENTIFIER SIZE_SPEC "="
BITFIELD_SPEC .

INSTRUCTION_DECLARATION = "inst" IDENTIFIER SIZE_SPEC "("
INSTRUCTION_ARGLIST ")" "{" INSTRUCTION_SPEC "}" .
INSTRUCTION_ARGLIST = INSTRUCTION_ARG { "," INSTRUCTION_ARG } .
INSTRUCTION_ARG = IDENTIFIER ":" TYPE_SPEC .
INSTRUCTION_SPEC = INSTRUCTION_SPEC_FIELD { ","
INSTRUCTION_SPEC_FIELD } .
INSTRUCTION_SPEC_FIELD = IDENTIFIER "=" BITFIELD_SPEC [","] .

TYPE_SPEC = TYPE_NAME SIZE_SPEC .
TYPE_NAME = "register" | "immediate" .

SIZE_SPEC = "[" EXPRESSION "]" .

COMMAND = COMMAND_STATEMENT ";" .
COMMAND_STATEMENT = SET_COMMAND | INCLUDE_COMMAND .

SET_COMMAND = "set" IDENTIFIER "=" EXPRESSION .
INCLUDE_COMMAND = "include" STRING .

IDENTIFIER = LETTER { ALPHACHARACTER } .
EXPRESSION = IDENTIFIER

2

Mya Specification 1 SYNTAX NOTATION

| NUMBER
| "(" EXPRESSION ")"
| EXPRESSION OPERATOR EXPRESSION .

OPERATOR = "-" | "+" | "/" | "*" | "|" | "&" | "^" | "~" | "<<" |
">>" .

UPPERCASE_LETTER = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |
"I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" |
"T" | "U" | "V" | "W" | "X" | "Y" | "Z" .
LOWERCASE_LETTER = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" |
"t" | "u" | "v" | "w" | "x" | "y" | "z" .
LETTER = UPPERCASE_LETTER | LOWERCASE_LETTER .
ALPHACHARACTER = LETTER | DECIMAL_DIGIT | "_" .

NUMBER = DECIMAL_NUMBER | HEXADECIMAL_NUMBER | OCTAL_NUMBER |
BINARY_NUMBER .
DECIMAL_NUMBER = DECIMAL_DIGIT { DECIMAL_DIGIT } .
HEXADECIMAL_NUMBER = "0x" HEXADECIMAL_DIGIT { HEXADECIMAL_DIGIT } .
OCTAL_NUMBER = "0o" OCTAL_DIGIT { OCTAL_DIGIT } .
BINARY_NUMBER = "0b" BINARY_DIGIT { BINARY_DIGIT } .

DECIMAL_DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
"8" | "9" .
HEXADECIMAL_DIGIT = DECIMAL_DIGIT

| "a" | "b" | "c" | "d" | "e" | "f"
| "A" | "B" | "C" | "D" | "E" | "F" .

STRING = """" { ANY_CHAR } """" .

1.1 Code example
include "registers.mya";

bitfield Reg[4]

bitfield Opcode[8] {
imm[1]
op[7]

}

register r0[32] = Reg{0}
register r1[32] = Reg{1}
register r2[32] = Reg{2}

3

Mya Specification 1 SYNTAX NOTATION

register r3[32] = Reg{3}
register r4[32] = Reg{4}
register r5[32] = Reg{5}
register r6[32] = Reg{6}
register r7[32] = Reg{7}

Internal rules to avoid errors.
set INSTRUCTION_MAX_SIZE = 16;
set INSTRUCTION_MIN_SIZE = 16;

Assembly example: mov r1, r2
inst mov[16](arg1: register[32], arg2: register[32]) {

opcode = Opcode {
imm = 0b0,
op = 0x00,

}, # It's equivalent to: Opcode{0}
reg1 = Reg{arg1},
reg2 = Reg{arg2},

}

4

Mya Specification 2 DECLARATIONS

2 Declarations
2.1 Bitfield
Bitfields are the representation of how the values (like registers) are specified on
the machine code of the ISA. The syntax to declare a bitfield is:

bitfield <name>[<size>]

OR

bitfield <name>[<size>] {
<field-list>

}

• <name> should start with an uppercase letter followed by any combination
of [a-z][A-Z][0-9]_ characters.

• <size> is a literal number that specifies the size of the bitfield in bits.
• <field-list> is a list of bitfield’s field names and sizes1.

2.1.1 Examples

bitfield Reg[4]

It’s a bitfield named Reg with 4 bits size.

bitfield Opcode[8] {
imm[1]
op[7]

}

It’s a bitfield named Opcode with 8 bits size and 2 fields:

1. imm (1 bit size) is the first bit of the bitfield Opcode.
2. op (7 bits size) are the next 7 bits of the bitfield Opcode.

1The sum of all field sizes should be equal to bitfield’s size.

5

Mya Specification 2 DECLARATIONS

2.2 Register
Registers of the ISA can be declared specifiying the bitfield where the register
code is set. The syntax to declare a register is:

register <name>[<size>] = <bitfield-specification>

• <name> should start with a letter followed by any combination of
[a-z][A-Z][0-9]_ characters.

• <size> is a literal number that specifies the size of the register in bits.
• <bitfield-specification> is the specification to what bitfield is used

to set this register code and what value is set on this bitfield to specify
the usage of this register.

2.2.1 Examples

bitfield Reg[4]

register r2[32] = Reg{2}

It’s a 32 bit register named r2 where they code is set on a Reg bitfield, and it’s
code is 2.

bitfield Reg[4] {
size[1]
code[3]

}

register rdx[64] = Reg {
size = 1,
code = 2,

}

It’s a 64 bit register named rdx where they code is set on a Reg bitfield, and the
bitfield’s fields are set to size = 1 and code = 2 respectivaly. It’s equivalent
to Reg{10}.

6

Mya Specification 2 DECLARATIONS

2.3 Instructions
ISA’s instructions are declared specifying it’s arguments and machine code
format. The syntax is:

inst <name>[<size>](<arglist>) {
<instruction-specification>

}

• <name> should start with a letter followed by any combination of
[a-z][A-Z][0-9]_ characters.

• <size> is the size in bits of the instruction.
• <arglist> is a command separated list of arguments that the instructions

expects.
• <instruction-specification> is a comma separated list of bitfields in

the instruction.

2.3.1 Examples

bitfield Reg[4]

bitfield Opcode[8] {
imm[1]
op[7]

}

register r0[32] = Reg{0}
register r1[32] = Reg{1}
...
register r15[32] = Reg{15}

inst mov[16](arg1: register[32], arg2: register[32]) {
opcode = Opcode {

imm = 0b0,
op = 0x1a,

},
reg1 = Reg{arg1},
reg2 = Reg{arg2},

}

This specify an instruction named mov, 16 bits size, that expects two 32 bit
registers as arguments. On the assembly perspective, this instruction looks like:

mov <reg32>, <reg32>

The machine code format is specified on the body of the instruction, where it’s
uses a sequence of one Opcode bitfield and two Reg bitfields. Having the format
like:

7

Mya Specification 2 DECLARATIONS

15 14 13 12 11 10 09 08 | 07 06 05 04 03 02 01 00
-- -- -- -- -- -- -- -- | -- -- -- -- -- -- -- --
| | | | | | |
| | | | | | |
| +--- op == 0x1a ---+ | | reg2 == arg2
+-- imm == 0 reg1 == arg1

Example:

Assembly: mov r2, r10
Hex machine code: 1a 2a
Bin machine code: 00011010 00101010

8

Mya Specification 3 COMMANDS

3 Commands
Commands are executed at parse-time. The generic syntax to a command is:

<keyword> <command-specific-syntax> ;

All commands ends with a semicolon.

3.1 include
The include command includes another module content on the same position
where it’s command is used. The included module is parsed and executed in the
same time at the include command is executed. The syntax is:

include "<module-path>";

• <module-path> is the relative or absolute path to module’s file to include,
using / as directory separator. A path starting with / means an absolute
path, where it’s start on the current filesystem root. Relative paths will be
relative starting from a common path where it’s considered the “current
working directory”, and not relative from where the module is.

3.1.1 Examples

include "modules/registers.mya";
include "config.mya";
include "/etc/mya/modules/common.mya";

3.2 set
The set command sets the value of a global variable, that could be used on any
expression. The syntax is:

set <name> = <value>;

• <name> is the name for the variable to change/create. Should start with a
letter followed by any combination of [a-z][A-Z][0-9]_ characters.

• <value> is any valid expression to be evaluate as the variable’s value.

3.2.1 Examples

set A = 2;
set B = A + 5;

9

	Syntax notation
	Code example

	Declarations
	Bitfield
	Examples

	Register
	Examples

	Instructions
	Examples

	Commands
	include
	Examples

	set
	Examples

